
 

 

 
Abstract— Fast Fourier Transform is an advanced 

algorithm for computing Discrete Fourier Transform 

efficiently. Although the results available from the 

operation of Discrete Fourier Transform (DFT) and Fast 

Fourier Transform (FFT) are same, but exploiting the 

periodicity and symmetry property of phase factor Fast 

Fourier Transform computes the Discrete Fourier 

Transform using reduced number of multiplication and 

addition operations. The basic structure used in the 

operations of Fast Fourier Transform is the Butterfly 

structure. For the implementation of Fast Fourier 

Transform the two methods are used such as decimation in 

time (DIT) and decimation in frequency (DIF). Both the 

methods give same result but for decimation in time of 

Fast Fourier Transform bit reversed inputs are applied 

and for decimation in frequency of Fast Fourier 

Transform normal order inputs are applied, and the result 

is reversed again. In this paper, operations for DFT and 

FFT have been discussed and shown with examples. It is 

found that generalized formula for FFT have been 

described same in the books, but the expressions in the 

intermediate computations for the first decimation and 

second decimation are different in the various books of 

Digital Signal Processing. The expressions in the 

intermediate computation of FFT described in different 

books are broadly compared in this paper.   
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I. INTRODUCTION 
Discrete Fourier Transform gives us frequency spectrum of 

a time domain signal from its equally spaced sampled 
sequence. It is given a vector of n input amplitudes like [f0, f1, 
f2, .....,  fn-2,  fn-1], Discrete Fourier transform yields a set of n 
frequency magnitudes, where n = 0, 1, 2,….., N – 1. The “N” 
is the length of the sequence to be transformed. X(k) are a 
finite-duration sequence for 0 ≤ k ≤ N – 1. Here k is used to 
denote the frequency domain ordinal, and n is used to 
represent the time domain ordinal [1]-[15]. 

N-point Discrete Fourier Transform (DFT) of the sampled 
sequence x(n) can be computed using the equation,   

X(k) =∑ 𝑥(𝑛). 𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0
  , where j = √−1 

X(k) = ∑ 𝑥(𝑛).𝑁−1
𝑛=0  WN

kn  , where WN = 𝑒−𝑗2𝜋/𝑁 for a given 
value of k.    

For 8-point DFT the values of WN
kn will be,  

W8
0 = 𝑒−𝑗2𝜋.0/𝑁 = 𝑒0 = 1 

W8
1 = 𝑒−𝑗2𝜋.1/8= cos 𝜋/4 – j sin 𝜋/4 = 0.707 – j (0.707) 

W8
2 = 𝑒−𝑗𝜋/2 = cos 𝜋/2 − j sin 𝜋/2 = − j  

W8
3 = − 0.707 – j (0.707) 

W8
4 = − 1 

W8
5 = − 0.707 + j (0.707) 

W8
6 = j 

W8
7 = 0.707 + j (0.707) 

W8
8 = 1 
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It is seen the magnitudes of W8
kn, i.e., |W8

kn | is always 1, 
only phase angle differs. Hence, |WN

kn | = 1. 
For input sequence, value of x(n) = [1, 2, 3, 4, 5, 6, 7, 8], 

then the magnitudes of the 8-point DFT will be as, 
X[0] = x(0).W8

0.0 + x(1).W8
0.1 + x(2).W8

0.2 + x(3).W8
0.3 + 

x(4).W8
0.4 + x(5).W8

0.5 + x(6).W8
0.6 + x(7).W8

0.7   
X[0] = 1 + 2 + 3 + 4 + 5 + 6 +7 + 8 = 36.000000  
X[1] = x(0).W8

1.0 + x(1).W8
1.1 + x(2).W8

1.2 + x(3).W8
1.3 + 

x(4).W8
1.4 + x(5).W8

1.5 + x(6).W8
1.6 + x(7).W8

1.7 
X[1] = − 4 + 9.656j        
X[1] = √(−4)2 + (9.656)2 = 10.452520 
X[2] = 5.656862  [when W8

kn , kn > 8, applying periodicity 
and symmetry property to keep kn within 0 ~ 8]   

X[3] = 4.329572 
X[4] = 4.000000 
X[5] = 4.329563 
X[6] = 5.656832 
X[7] = 10.452387 
The results of the DFT operations have been calculated and 

verified using the program written in the C Compiler software. 
Here for this 8-point DFT total 82 or 64 multiplications and 56 
additions have been done. For a particular value of k the direct 
computations of X(k) requires N complex multiplications and 
(N − 1) additions. So, N values of DFT computation requires 
N2 complex multiplications and N (N − 1) complex additions. 

II. FAST FOURIER TRANSFORM 
Fast Fourier Transform (FFT) uses mathematical short-cuts 

to reduce the number of computations using the Symmetry and 
Periodicity property of phase factor which is also called 
twiddle factor like values of WN

kn mentioned below:  
WN

k + N = WN
k         [Periodicity Property] 

WN
k + N/2 = − WN

k    [Symmetry Property] 
For 8-point Fast Fourier Transform (FFT) due to Periodicity 

and Symmetry Property the values of W8
kn are, 

W8
0, W8

8, W8
16, W8

24, ……  = 1;  
W8

4, W8
12, W8

20, W8
28, …. = − 1; 

For an N-point Fast Fourier Transform (FFT), the required 
twiddle factors are log2 𝑁 and the values of twiddle factors are 
constant and can be stored previously.  

In FFT, when the summation ∑ 𝑥(𝑛).  𝑁−1
𝑛=0 WN

kn is splitted 
into two parts, one with the even-indexed x(n), i.e., n = 2n for 
even, and another is odd-indexed x(n), i.e., n = 2n +1 for odd, 
where n = 0, 1, 2, …, 𝑁

2
 − 1, and the first decomposition 

equation of FFT can be written as [1]-[21], 

X(k) = ∑ 𝑥(2𝑛).
𝑁

2
 − 1

𝑛=0  WN 
2kn  +  ∑ 𝑥(2𝑛 + 1).

𝑁

2
 − 1

𝑛=0  WN 
k(2n +1)     

Since, WN
2 = [𝑒−𝑗(

2𝜋

𝑁
)]2 = 𝑒

−𝑗(
2𝜋
𝑁
2

)

 = WN/2 

So, X(k) = ∑ 𝑥(2𝑛).
𝑁

2
 − 1

𝑛=0  WN/2
kn + WN

k ∑ 𝑥(2𝑛 + 1).
𝑁

2
 − 1

𝑛=0  
WN/2

kn                                            …..……….….…….(1) 
Then, X(k) = Xe(k) + WN

k Xo(k) , where e indicates even and 
o indicates odd. 

From Symmetry property, for 8-points FFT, we can write 
as, 

X(k) = Xe(k) + W8
k Xo(k) ,                   for 0 ≤ k ≤ 3, 

X(k) = Xe(k – 4) – W8
k – 4 Xo(k – 4) ,   for 4 ≤ k ≤ 7,  

Since k ≥ 𝑁
2
  , WN

k + N/2 = − WN
k ;  

Then for k = 0 to 7, we get, 
X(0) = Xe(0) + W8

0 X0(0); X(4) = Xe(0) − W8
0 X0(0);                                       

X(1) = Xe(1) + W8
1 X0(1); X(5) = Xe(1) − W8

1 X0(1); 
X(2) = Xe(2) + W8

2 X0(2); X(6) = Xe(2) − W8
2 X0(2); 

X(3) = Xe(3) + W8
3 X0(3); X(7) = Xe(3) − W8

3 X0(3); 
This can be represented in butterfly structure like below: 
 

 
Fig. 1 Flow graph of butterfly diagram 

 
For N-point FFT, each butterfly stage consists of N/2 

butterflies and number of stages in the flow graph is given by 
M = log2 𝑁, therefore the number of complex multiplications 
are required by 𝑁

2
 log2 𝑁 and number of complex additions are 

given by N log2 𝑁 . 
Since major discussion point in this paper is the variation of 

expressions in the intermediate computation of Fast Fourier 
Transform, here in an example, detailed operations of an 8-
point decimation in time of FFT have been discussed and then 
comparisons with various books are shown in Table II.  

The first part of the equation number (1) consists of even 
sequence of x(n) and the second part consists of odd sequence 
of x(n). The first part of the equation, i.e.,  

X(k)even = ∑ 𝑥(2𝑛).
𝑁

2
 − 1

𝑛=0,𝑒𝑣𝑒𝑛  WN/2
kn ; n = 0, 1, 2, 3 for N = 8; 

X(0)even = ∑  𝑥(2𝑛).3
𝑛=0,𝑒𝑣𝑒𝑛 W4

0.n , for k = 0. 
X(0)even = x(0).W4

0 + x(2).W4
0 + x(4).W4

0 + x(6).W4
0 ; 

X(1)even = x(0).W4
0 + x(2).W4

1 + x(4).W4
2 + x(6).W4

3;      
for k = 1. 
X(2)even = x(0).W4

0 + x(2).W4
2 + x(4).W4

4 + x(6).W4
6;  

for k = 2. 
X(3)even = x(0).W4

0 + x(2).W4
3 + x(4).W4

6 + x(6).W4
9;          

for k = 3. 
The second part of the equation, i.e., 

X(k)odd = WN
k  ∑ 𝑥(2𝑛 + 1).

𝑁

2
 − 1

𝑛=0,𝑜𝑑𝑑  WN/2
kn ;   

Here n = 0, 1, 2, 3 for N = 8; 
X(0)odd = W8

0 [x(1)W4
0 + x(3)W4

0 + x(5)W4
0 + x(7)W4

0 ];        
for k = 0. 
X(1)odd = W8

1 [x(1)W4
0 + x(3)W4

1 + x(5)W4
2 + x(7)W4

3];         
for k = 1. 
X(2)odd = W8

2 [x(1)W4
0 + x(3)W4

2 + x(5)W4
4 + x(7)W4

6];          
for k = 2. 
X(3)odd = W8

3 [x(1)W4
0 + x(3)W4

3 + x(5) W4
6 + x(7)W4

9];         
for k = 3. 
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TABLE I.  NUMBER OF OPERATIONS FOR N/2 POINTS FFT 

 
It is seen that a FFT of size N can be computed through two 

FFTs of size N/2 and the computation of X(k) requires 2(N/2)2 
+ N/2 = N2/2 + N/2 complex multiplications and               
2[N/2 (N/2 – 1)] complex additions. These computing 
operations are described in the book Proakis et al. [1]-[15]. 

The computing operations of 8-point FFT described in the 
various Digital Signal Processing books are narrated in the 
Table II below. The computing operations are described when 
a 8-point FFT is splitted into even and odd parts, i.e.,  
decimated by 2 for the value of N ≥ 3, but all values deducted 
in the different books are approximately same. 

TABLE II.  DIFFERENT BOOKS COMPARED N/2 POINTS FFT 

 
Now, an example has been shown for 16-point FFT. So, 

when 16-point FFT is splitted into two parts, i.e., even and odd 
parts, we get the sequences x(n) after decimation (considering 
N = N/2), here N = 16,  

X(k)even = x(0), x(2), x(4), x(6), x(8), x(10), x(12), x(14); 
X(k)odd  = x(1), x(3), x(5), x(7), x(9), x(11), x(13), x(15); 
When X(k)even and X(k)odd are further splitted, i.e., decimated 

by two again, then the equation (1) is written, 

X(k)even = ∑ 𝑥(4𝑛).
𝑁

4
 − 1

𝑛=0  WN
4kn + ∑ 𝑥(4𝑛 + 2).

𝑁

4
 − 1

𝑛=0  WN
k (4n + 2) 

X(k)even = ∑ 𝑥(4𝑛).
𝑁

4
 − 1

𝑛=0  WN/4
kn + WN/2

k  

               ∑ 𝑥(4𝑛 + 2).
𝑁

4
 − 1

𝑛=0  WN/4
kn 

 
X(k)even = ∑ 𝑥(4𝑛).3

𝑛=0  W4
kn + W8

k ∑ 𝑥(4𝑛 + 2).3  
𝑛=0  W4

kn                                                    
                                                          ……….…….… (2) 
where n = 0, 1, 2, 3, and N = 16.          
 

Now the x(n) sequences for the first and second part of 
X(k)even will be 

X(k)even,1st part = x(0), x(4), x(8), x(12); 
X(k)even,2nd part = x(2), x(6), x(10), x(14); 
The equation for X(k)odd will be  

X(k)odd = ∑ 𝑥(4𝑛 + 1).
𝑁

4
 − 1

𝑛=0
 WN

k(4n+1) + ∑ 𝑥(4𝑛 + 3).
𝑁

4
 − 1

𝑛=0
  

WN
k(4n+ 3) 

X(k)odd = WN
k ∑ 𝑥(4𝑛 + 1).

𝑁

4
 − 1

𝑛=0
 WN/4

kn + 

               WN
3k ∑ 𝑥(4𝑛 + 3).

𝑁

4
 − 1

𝑛=0
 WN/4

kn  

X(k)odd = W16
k ∑  𝑥(4𝑛 + 1).3

𝑛=0  W4
kn + 

               W16
3k ∑ 𝑥(4𝑛 + 3).3

𝑛=0  W4
kn              ….…..….. (3) 

where n = 0, 1, 2, 3, and N = 16.       
Now the x(n) sequences for the first and second part of 

X(k)odd will be 
X(k)odd,1st part = x(1), x(5), x(9), x(13); 
X(k)odd,2nd part = x(3), x(7), x(11), x(15); 
Now putting the value of x(n) sequences in the equation (2), 

we get the even sequences 
X(0)even = x(0).W4

0 + x(4).W4
0 + x(8).W4

0 + x(12).W4
0 + W8

0 
[x(2).W4

0 + x(6).W4
0 + x(10).W4

0 + x(14).W4
0];  

X(1)even = x(0).W4
0 + x(4).W4

1 + x(8).W4
2 + x(12).W4

3 + W8
1 

[x(2).W4
0 + x(6).W4

1 + x(10).W4
2 + x(14).W4

3]; 
X(2)even = x(0).W4

0 + x(4).W4
2 + x(8).W4

4 + x(12).W4
6 + W8

2 
[x(2).W4

0 + x(6).W4
2 + x(10).W4

4 + x(14).W4
6];    

X(3)even = x(0).W4
0 + x(4).W4

3 + x(8).W4
6 + x(12).W4

9 + W8
3 

[x(2).W4
0 + x(6).W4

3 + x(10).W4
6 + x(14).W4

9];   
 Now putting the value of x(n) sequences in the equation 

(3), we get the odd sequences 
X(0)odd = W16

0 [x(1).W4
0 + x(5).W4

0 + x(9).W4
0 + x(13).W4

0] 
+ W16

0 [x(3).W4
0 + x(7).W4

0 + x(11).W4
0 + x(15).W4

0]; 
X(1)odd = W16

1 [x(1).W4
0 + x(5).W4

1 + x(9).W4
2 + x(13).W4

3] 
+ W16

3 [x(3).W4
0 + x(7).W4

1 + x(11).W4
2 + x(15).W4

3]; 
X(2)odd = W16

2 [x(1).W4
0 + x(5).W4

2 + x(9).W4
4 + x(13).W4

6] 
+ W16

6 [x(3).W4
0 + x(7).W4

2 + x(11).W4
4 + x(15).W4

6]; 
X(3)odd = W16

3 [x(1).W4
0 + x(5).W4

3 + x(9).W4
6 + x(13).W4

9] 
+ W16

9 [x(3).W4
0 + x(7).W4

3 + x(11).W4
6 + x(15).W4

9]; 
Initially N-point FFT is splitted into two N/2 point FFTs. 

When each N/2-point FFT is further splitted into N/4 point 
FFTs, then the required numbers of multiplication and 
addition operations have been described in the Table III below 
for 16-point FFTs as per described calculations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The number of operations when N-point (N = 8) FFT is splitted 

into two FFTs of N/2-point size (N/2 = 4) 

Multiplication 

operations for 

first part [even 

sequence of 

x(n)] 

 

(i) 

Multiplication 

operations for 

second part 

[odd sequence 

of x(n)] 

 

(ii) 

Addition 

operations  

for first 

part [even 

sequence 

of x(n)] 

(iii) 

Addition 

operations  

for second 

part [odd 

sequence of 

x(n)] 

(iv) 

16 16 + 4 12 12 
(i) + (ii), For N = 8, 

Total Multiplications = 36; 
General Formula for N-point FFT: 

2(N/2)2 + N/2 = N2/2 + N/2 

(iii) + (iv), For N = 8, 
Total Additions = 24; 

General Formula for N-point 
FFT: 

2[N/2 (N/2 – 1)] 

Srl. 

No. 

Name of Books Multiplication 

Operations 

Addition 

Operations 

1. Proakis et al. N2/2 + N/2 2[N/2 (N/2 – 1)] 
2. Diniz et al. N2/2 + N N2/2 
3. Rabiner et al. N2/2 + N --- 
4. Oppenheim et al. N + 2(N/2)2 N + 2(N/2)2 
5. Mitra N + N2/2 N + N2/2 (approx) 
6. Salivahanan et al. N + N2/2 N + N2/2 
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TABLE III.  NUMBER OF OPERATIONS FOR N/4 POINTS FFT 

 

So, when N/2 point transforms are decomposed into N/4 
point transforms then the terms 2(N/2)2 + N/2 are replaced by 
N2/4 + N/2 + N/4 for total number of multiplications.  

The computing operations when N/2-point FFTs are further 
decimated into N/4-point FFTs are described in the various 
Digital Signal Processing books and are delineated in the 
Table IV below.  

TABLE IV.  DIFFERENT BOOKS COMPARED N/4 POINTS FFT 

 

The decimation of data sequence can be repeated again 
from N/4 points until the resulting sequences are reduced to 
one point sequence. The decimation can be performed up to 
log2 𝑁 times. Therefore, the total number of complex 
multiplications are reduced to (N/2) log2 𝑁. The Number of 
complex additions are N log2 𝑁. For decimation in time (DIT) 
of FFT bit reversal input sequences are used and in the output 
normal order bit sequences are available.  

A. Application of Fast Fourier Transform 

Fast Fourier Transform is applied in digital signal 
processing; digital filtering especially noise filtering; 
frequency information of a signal; the correlation of two time 
series; image filtering, image analysis, image compression, 
image reconstruction and image matching; realization of 
hardware structure in very large scale integration (VLSI) 
chips; communications field like Orthogonal Frequency 
Division Multiplexing or Multiple Access (OFDM or 
OFDMA), Digital Broadcasting, Worldwide Interoperability 
for Microwave Access (WiMAX), Long Term Evolution 
(LTU in 4G Mobile System); in security for long integer 

multiplication in public key cryptography algorithms like RSA 
(Rivest, Shamir, and Adelman); spectrogram etc. [1]-[16]. 

B. Comparison of DFT and FFT 

 A comparison format of DFT and FFT is shown below for 
different values of N in Table V [1]-[21]. 

TABLE V.  DFT & FFT COMPARISON FOR VARIOUS N 

III. CONCLUSION 
It is found that for decimation in time operation for N/2 

point FFT and N/4 point FFT, different results have been 
described in different books at the intermediate stages as 
described in the TABLE II and TABLE IV but the result 
available in the final stage, i.e., final calculations are same 
value in all the books and the literature as shown in the 
TABLE V. The ambiguity is mainly related with the 
multiplication operation of twiddle factors and to be studied in 
detail further. Therefore, the direct computation of Discrete 
Fourier Transform requires computation of the order of O(N2), 
whereas Fast Fourier Transform entails only the order of O(N 
log2 𝑁). Thus FFT minimizes time and space complexities 
having accurate result within real time. 
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